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Stability of the laminar mixing of two parallel streams 
with respect to supersonic disturbances 
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(Received 20 October 1965) 

The stability with respect to ‘supersonic’ disturbances of the laminar mixing 
of two parallel streams of a compressible fluid is studied. For locally supersonic 
disturbances there will be waves propagating outward from the mixing layer. 
The numerical results show that the flow is generally unstable with respect to 
supersonic disturbances, although the amplification rate is smaller than that 
for subsonic disturbances. The flow is more unstable at  lower Mach number, 
and the increase of the angle between the disturbance wave-number vector and 
the principal flow direction tends to increase the instability. 

1. Introduction 
In  a previous paper the stability with respect to subsonic disturbances of the 

laminar mixing of two parallel streams of a compressible fluid was studied 
(Lessen, Fox & Zien 1965a). For infinite Reynolds numbers, neutrally stable 
eigenvalues along with further indications of instability were obtained, and it 
was concluded that increasing the Mach number of the flow has a de-stabilizing 
effect. Furthermore, the flow is more unstable as the angle between the dis- 
turbance wave-number vector and the principal flow direction becomes larger. 
Since the time of the investigation by Lees & Lin (1 946) of the stability of com- 
pressible flows, supersonic disturbances to a continuous flow profile have hardly 
been studied. For a discontinuous flow profile it was shown recently that super- 
sonic disturbances may cause instability (Miles 1958; Lessen, Fox & Zien 1965b), 
but the amplification rate of the disturbance is relatively smaller than that 
of a subsonic disturbance. 

For the case of supersonic disturbances, one can see from the asymptotic 
solutions to the linearized disturbance equation that progressive waves will be 
propagated obliquely to the viscous (continuously varying) layer of the streams. 
In  the case of laminar mixing of two streams (half jet), one would expect only 
outgoing waves for stability considerations (Lees & Lin 1946; Miles 1958). 
The amplitudes of the disturbances are oscillatory but finite at infinite distance. 
Therefore, in a similar manner as for subsonic disturbanceo, one is able to obtain 
the relevant eigenvalues for the stability of the flow with respect to supersonic 
disturbances. 
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2. Basic equations 
Consider two parallel semi-finitely extended streams of a viscous compressible 

fluid. The upper stream moves initially with a velocity u* and the lower stream is 
initially a t  rest. Assume that the flow is subjected to a small disturbance having 
the form 

Q = q ( y ) e x p [ i ( ~ + ~ z - a c t ) ] .  

For infinite Reynolds number, the differential equation for the Squire trans- 
formed-pressure disturbance 5 is given in dimensionless form by (Lessen et al. 

(1) 

1965a) 

where Y is the Howarth transformed co-ordinate 

U the mean flow velocity with u* as a reference quantity, the mean temperature, 
c ( =  c,,+ici) the complex wave velocity, &( = a/cos@) the wave-number in the 
direction of wave propagation i@( = i@, cos 0) the transformed Mach number, 
M, the Mach number of the upper stream, and 0 the angle between the wave- 
number vector and the mean flow direction. 

The asymptotic solutions for 77 are 

f i  = A exp { - &T( - co) [I  - BzcZ/(fi( - C O ) ] ~  Y }  

+ B exp {ET( - 00) [I - B2c2/T( - C O ) ] ~  Y} as Y + -a. (4) 

ii = ~ e x p { d i [ l - ~ ~ ( 1 - c ) 2 1 ~ 1 ’ } + ~ e x p { - d i [ l - B ~ ( 1 - ~ ) 2 ] ~ ~ }  as Y -++a. 
(5 )  

For supersonic disturbances, i.e. disturbances whose wave velocity relative to 
the local flow, in the direction of wave propagation, has a magnitude greater than 

~ ~- 

the speed of sound, one has 
&2(U-c)2/T > 1. 

Thus, the disturbances are oscillatory at large distance from the mixing layer, 
and behave as progressive waves. In  distinguishing the outgoing and the in- 
coming waves, one has to note that an incoming wave relative to a fixed co- 
ordinate may appear to be an outgoing wave to an observer moving with the 
free-stream velocity (Lees & Lin 1946). To a fixed observer, the first term in 
(4) or (5) represents an outgoing wave and the second term the incoming wave. 
It has been mentioned that we only expect an outgoing wave relative to the local 
fluid motion in the mixing of two streams. The second term in (4) drops out for 
locally supersonic disturbances with the lower stream a t  rest. 

3. Neutral disturbances 
When the disturbances are supersonic relative to the lower stream but sub- 

sonic relative to the upper stream, there will be a phase shift for the disturbances 
between Y = - co and the point where U = c; there will be no phase shift from 
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the point where i5 = c to Y = +a. It is seen from the consideration of subsonic 
disturbances (table 1, Lesson et al. 1965a) that the foregoing is the only possible 
case for the existence of neutral disturbances at high Mach number and small 
wave-propagation angle relative to the mean flow. In  this case the asymptotic 
behaviours of 5 are 

} (5')  
ii = Aexp( - id iT ( -co ) [~2~2 /~ ( -CO)-  114 Y> as Y +-a, 

ii = ~ e x p ( - d i [ l - ~ 2 ( 1 - ~ ) 2 ] 6 ~ )  as Y + + a ,  

where the coefficient A can be complex. 

G = &/(dizFii), Let 
( 7 )  

where the superscript 'dot' denotes the derivative of a quantity with respect to 
Y .  Then equation (2) becomes 

G = [!I?- i@(i5 - c)~] + [26/(i5 - c) - !?/TI G - di2TG, (8) 

and the boundary conditions for G are 

(9) G = - [ 1 - BZ( 1 - c)~]$/& at Y = + 00.. I G = - i[$@c2/p( - co) - l]i/di at Y = - co, 

Since there is a singularity at  'li = c, we shall integrate equation (8) along the 
complex path as we did for the case of subsonic disturbances. However, no 
necessary and sufficient condition for the existence of neutral supersonic dis- 
turbances has been obtained. Thus, in order to satisfy the boundary condition, 
one has to try different sets of values of di and c. 

For negative ci, an outgoing wave cannot exist, because otherwise ii becomes 
infinite at Y = -a. Therefore, the laminar mixing is usually unstable with 
respect to supersonic disturbances, and the neutral stability is an extreme case. 

5. Numerical results and discussions 
For the details of the method for numerical calculation, the readers are referred 

to the previous paper (Lessen et al. 1965a, or Zien 1965). Table 1 lists the eigen- 
values for neutral supersonic disturbances relative to the lower stream. For 
comparison, eigenvalues for neutral subsonic disturbances are given outside 
the outlined box. In the numerical integration, the coefficient A in equation (5') 
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was set to unity; thus, when the integration reached the real axis, the pressure 
disturbance became complex. By multiplying the disturbance function with the 
complex conjugate of the complex disturbance function at  I' = 6 + O i ,  we have 
a real disturbance function on the real axis from the singularity to I' = +a 
(the constant A is made suitably complex). Figure 1 gives the transformed 
pressure disturbance along the complex path Y ,  = 0-25Y,- 1.5. 
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TABLE 1. Wave-numbers and wave velocities for neutral disturbances 
at  different Mach numbers and wave-propagation angles 

MO O0 30° 60' 

1-5 (ac/aa,,e,, 04745 - 0.6161i 0.5417 - 0.6232i 0.4966 - 0.644% 

(ac/a@),*& 0.0000 + 0.00OOi - 0.0312 + 0'0343i - 0.0255 + 0.0329i 

(acpnio)o.i 0.0677- 0.1200i 0.0370- 0.1016.3 0.0027 - 0.0672i 
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The rates of change of c with respect to di, 0 and Mo are given in table 2. The 
same conclusions as for subsonic disturbances can be drawn for supersonic 
disturbances. Namely, the flow is more unstable at  lower Mach numbers, and 
the increase of the wave-propagation angle relative to  the mean flow tends to 
destabilize the flow. However, in the present case, the wavelength of an ampli- 

YT 

FIGURE 1. Pressure disturbance ff (fl,, solid lines, and ffi, broken lines) 
along the complex path Yi = Y J 4 -  1.5 at @ = 0'. 

fied disturbance must be longer than that of a neutral disturbance, and no 
disturbance can exist with a wavelength shorter than the neutral wavelength 
for an outgoing wave at given Mach number and wave-propagation angle. Though 
the amplification rate for supersonic disturbances is relatively smaller than that 
for supersonic ones, the shear layer is generally unstable even at  very high 
Mach number. 
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